Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord.
نویسندگان
چکیده
Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent co-contraction of antagonist flexor and extensor muscles, is driven by Ia afferent feedback. Additionally, circuits mediating presynaptic inhibition can limit Ia afferent synaptic transmission onto central neuronal targets in a task-specific manner. These circuits can also be activated by stimulation of proprioceptive afferents. Rodent locomotion rapidly matures during postnatal development; therefore, we assayed the functional status of reciprocal and presynaptic inhibitory circuits of mice at birth and compared responses with observations made after 1 wk of postnatal development. Using extracellular physiological techniques from isolated and hemisected spinal cord preparations, we demonstrate that Ia afferent-evoked reciprocal inhibition is as effective at blocking antagonist motor neuron activation at birth as at 1 wk postnatally. In contrast, at birth conditioning stimulation of muscle nerve afferents failed to evoke presynaptic inhibition sufficient to block functional transmission at synapses between Ia afferents and motor neurons, even though dorsal root potentials could be evoked by stimulating the neighboring dorsal root. Presynaptic inhibition at this synapse was readily observed, however, at the end of the first postnatal week. These results indicate Ia afferent feedback from the periphery to central spinal circuits is only weakly gated at birth, which may provide enhanced sensitivity to peripheral feedback during early postnatal experiences.
منابع مشابه
Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord
Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory...
متن کاملP boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn.
Presynaptic inhibition of primary muscle spindle (group Ia) afferent terminals in motor nuclei of the spinal cord plays an important role in regulating motor output and is produced by a population of GABAergic axon terminals known as P boutons. Despite extensive investigation, the cells that mediate this control have not yet been identified. In this work, we use immunocytochemistry with confoca...
متن کاملETS Gene Er81 Controls the Formation of Functional Connections between Group Ia Sensory Afferents and Motor Neurons
The connections formed between sensory and motor neurons (MNs) play a critical role in the control of motor behavior. During development, the axons of proprioceptive sensory neurons project into the spinal cord and form both direct and indirect connections with MNs. Two ETS transcription factors, ER81 and PEA3, are expressed by developing proprioceptive neurons and MNs, raising the possibility ...
متن کاملA Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry
Spinal interneurons are critical modulators of motor circuit function. In the dorsal spinal cord, a set of interneurons called GABApre presynaptically inhibits proprioceptive sensory afferent terminals, thus negatively regulating sensory-motor signaling. Although deficits in presynaptic inhibition have been inferred in human motor diseases, including dystonia, it remains unclear whether GABApre...
متن کاملFormation of specific monosynaptic connections between muscle spindle afferents and motoneurons in the mouse.
In adult vertebrates, sensory neurons innervating stretch-sensitive muscle spindles make monosynaptic excitatory connections with specific subsets of motoneurons in the spinal cord. Spindle afferents (Ia fibers) make the strongest connections with motoneurons supplying the same (homonymous) muscle but make few or no connections with motoneurons supplying antagonistic or functionally unrelated m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 109 8 شماره
صفحات -
تاریخ انتشار 2013